15 research outputs found

    Protein docking prediction using predicted protein-protein interface

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many important cellular processes are carried out by protein complexes. To provide physical pictures of interacting proteins, many computational protein-protein prediction methods have been developed in the past. However, it is still difficult to identify the correct docking complex structure within top ranks among alternative conformations.</p> <p>Results</p> <p>We present a novel protein docking algorithm that utilizes imperfect protein-protein binding interface prediction for guiding protein docking. Since the accuracy of protein binding site prediction varies depending on cases, the challenge is to develop a method which does not deteriorate but improves docking results by using a binding site prediction which may not be 100% accurate. The algorithm, named PI-LZerD (using Predicted Interface with Local 3D Zernike descriptor-based Docking algorithm), is based on a pair wise protein docking prediction algorithm, LZerD, which we have developed earlier. PI-LZerD starts from performing docking prediction using the provided protein-protein binding interface prediction as constraints, which is followed by the second round of docking with updated docking interface information to further improve docking conformation. Benchmark results on bound and unbound cases show that PI-LZerD consistently improves the docking prediction accuracy as compared with docking without using binding site prediction or using the binding site prediction as post-filtering.</p> <p>Conclusion</p> <p>We have developed PI-LZerD, a pairwise docking algorithm, which uses imperfect protein-protein binding interface prediction to improve docking accuracy. PI-LZerD consistently showed better prediction accuracy over alternative methods in the series of benchmark experiments including docking using actual docking interface site predictions as well as unbound docking cases.</p

    Salt-induced formation of the A-state of ferricytochrome c--effect of the anion charge on protein structure

    No full text
    Structural information on partially folded forms is important for a deeper understanding of the folding mechanism(s) and the factors affecting protein stabilization. The non-native compact state of equine cytochrome c stabilized by salts in an acidic environment (pH 2.0-2.2), called the A-state, is considered a suitable model for the molten globule of cytochrome c, as it possesses a native-like alpha-helix conformation but a fluctuating tertiary structure. In this article, we extend our knowledge on anion-induced protein stabilization by determining the effect of anions carrying a double negative charge; unlike monovalent anions (which are thought to exert an 'ionic atmosphere' effect on the macromolecule), divalent anions are thought to bind to the protein at specific surface sites. Our data indicate that divalent anions, in comparison to monovalent ions, have a greater tendency to stabilize the native-like M-Fe(III)-H coordinated state of the protein. The possibility that divalent anions may bind to the protein at the same sites previously identified for polyvalent anions was evaluated. To investigate this issue, the behavior of the K88E, K88E/T89K and K13N mutants was investigated. The data obtained indicate that the mutated residues, which contribute to form the binding sites of polyanions, are important for stabilization of the native conformation; the mutants investigated, in fact, all show an increased amount of the misligated H-Fe(III)-H state and, with respect to wild-type cytochrome c, appear to be less sensitive to the presence of the anion. These residues also modulate the conformation of unfolded cytochrome c, influencing its spin state and the coordination to the prosthetic group

    Insights into structure and function of SHIP2-SH2: homology modeling, docking, and molecular dynamics study

    No full text
    SRC homology 2 (SH2)-containing inositol 5′-phosphatase protein (SHIP2) is a potential target for type 2 diabetes. Its ability to dephosphorylate the lipid messenger phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3], important for insulin signaling, makes it an important target against type 2 diabetes. The insulin-induced SHIP2 interaction with Shc is very important for the membrane localization and functioning of SHIP2. There is a bidentate relationship between the two proteins where two domains each from SHIP2 and Shc are involved in mutual binding. However in the present study, the SHIP2-SH2 domain binding with the phosphorylated tyrosine 317 on the collagen-homology (CH) domain of Shc, has been studied due to the indispensability of this interaction in SHIP2 localization. In the absence of the crystal structure of SHIP2-SH2, its structural model was developed followed by tracking its molecular interactions with Shc through molecular docking and dynamics studies. This study revealed much about the structural interactions between the SHIP2-SH2 and Shc-CH. Finally, docking study of a nonpeptide inhibitor into the SHIP2-SH2 domain further confirmed the structural interactions involved in ligand binding and also proposed the inhibitor as a major starting point against SHIP2-SH2 inhibition. The insights gained from the current study should prove useful in the design of more potent inhibitors against type 2 diabetes
    corecore